Synthesis of pyrazole containing α-amino acids via a highly regioselective condensation/aza-Michael reaction of β-aryl α,β-unsaturated ketones.

نویسندگان

  • Lynne Gilfillan
  • Raik Artschwager
  • Alexander H Harkiss
  • Rob M J Liskamp
  • Andrew Sutherland
چکیده

A synthetic approach for the preparation of a new class of highly conjugated unnatural α-amino acids bearing a 5-arylpyrazole side-chain has been developed. Horner-Wadsworth-Emmons reaction of an aspartic acid derived β-keto phosphonate ester with a range of aromatic aldehydes gave β-aryl α,β-unsaturated ketones. Treatment of these with phenyl hydrazine followed by oxidation allowed the regioselective synthesis of pyrazole derived α-amino acids. As well as evaluating the fluorescent properties of the α-amino acids, their synthetic utility was also explored with the preparation of a sulfonyl fluoride derivative, a potential probe for serine proteases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regioselective 1,4-trifluoromethylation of α,β-unsaturated ketones via a S-(trifluoromethyl)diphenylsulfonium salts/copper system

Regioselective conjugate 1,4-trifluoromethylation of α,β-unsaturated ketones by the use of shelf-stable electrophilic trifluoromethylating reagents, S-(trifluoromethyl)diphenylsulfonium salts and copper under mild conditions is described. A wide range of acyclic aryl-aryl-enones and aryl-alkyl-enones were converted into β-trifluoromethylated ketones in low to moderate yields.

متن کامل

Catalytic Asymmetric Inverse-Electron-Demand Hetero-Diels-Alder Reactions.

In this review, the recent developments in catalytic asymmetric inverse-electron-demand hetero-Diels-Alder reaction, which is recognized as one of the most powerful routes to construct highly functionalized and enantioenriched six-membered heterocycles, are described. The article is organized on the basis of different kinds of electron-deficient heterodienes, including α,β-unsaturated ketones/a...

متن کامل

Investigation on the effect of trifluoromethyl group on the [3+2] cycloadditions of thiocarbonyl S-methanides with α, β-unsaturated ketones: A theoretical study using DFT

A [3+2] cycloaddition (32CA) reaction among a thiocarbonyl ylide (TCY 2) with (E)-4,4,4-trifluoro-4-phenylbut-3-en-2-one (TFB 4) as an electron-deficient enone in tetrahydrofuran (THF) were studied within the Molecular Electron Density Theory (MEDT), at the DFT-B3LYP/6-31G(d) computational level to analysis energetics, selectivities, and mechanistic aspects. The reaction can progress in four co...

متن کامل

Synthesis and Antimicrobial Evaluation of Some Novel Bis-α,β-Unsaturated Ketones, Nicotinonitrile, 1,2-Dihydropyridine-3-carbonitrile, Fused Thieno[2,3-b]pyridine and Pyrazolo[3,4-b]pyridine Derivatives

The title compounds were prepared by reaction of 1,1'-(5-methyl-1-phenyl-1H-pyrazole-3,4-diyl)diethanone (1) with different aromatic aldehydes 2a-c, namely Furfural (2a), 4-chlorobenzaldehyde (2b) and 4-methoxybenzaldhyde (2c) to yield the corresponding α,β-unsaturated ketones 3a-c. Compound 3 was reacted with malononitrile, 2-cyanoacetamide or 2-cyanothioacetamide yielded the corresponding ...

متن کامل

Synthesis, characterization and using Fe3O4@SiO2@FeCl3 as a new nanocatalyst for aza-Michael reaction between amines and ethyl crotonate

In this article, recyclable Fe3O4@SiO2@FeCl3 was synthesized and entirely characterized by various techniques including XRD, FT-IR, SEM, EDX and VSM analysis. The catalytic ability of produced Fe3O4@SiO2@FeCl3 was studied in the aza-Michael reaction of diethyl amine and ethyl crotonate which lead to high yie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Organic & biomolecular chemistry

دوره 13 15  شماره 

صفحات  -

تاریخ انتشار 2015